人工智能的中的搜索

本文最后更新于:3 年前

人工智能中关于搜索的一些最基础的知识。

AI 中的搜索

对于一个 goal-based agent,搜索是使其找到一个动作或者一系列动作来达到目标。 有很多例子,比如走迷宫,寻路问题,8-queen 问题等。 一般来说包含树搜索和图搜索等。

对于考虑路径的搜索而言

评估策略需考虑以下四个维度:

  • Completeness: Does it always find a solution if it exists?
  • Time complexity: # nodes generated/expanded.
  • Space complexity: maximum # nodes in memory.
  • Optimality: Does it always find the least-cost solution?

存在两类搜索策略:

  • Uniformed
    • Breadth-first search (BFS): Expand shallowest node
    • Depth-first search (DFS): Expand deepest node
    • Depth-limited search (DLS): Depth first with depth limit
    • Iterative-deepening search (IDS): DLS with increasing limit
    • Uniform-cost search (UCS): Expand least cost node (the cost could be the length between nodes)
  • Informed
    • Greedy best-first search: Expand the node that appears to be closest to goal
    • A* search: Minimize the total estimated solution cost (to middle node + node to goal;f=g+h). BFS mode.
    • IDA*: IDS + A*. DLS mode. The cost of space is lower than A*.

对于 A* 中启发式策略而言(h):

  • A good heuristic must be admissible.
  • An admissible heuristic never overestimates the cost to reach the goal, that is it is optimistic
  • For admissible h1h_1 and h2h_2, if h1h_1(s) ≥ h2h_2(s) for ∀𝑠 ⇒ h1h_1 dominates h2h_2 and is more efficient for search.

UCS vs Greedy Best First vs A*:

  • UCS:f(n) = g(n)
  • Greedy Best First: f(n) = h(n)
  • A*: f(n)=g(n)+h(n)

对于不考虑路径的搜索

Local search: the path doesn’t matter

  • Hill climbing
  • Genetic algorithms
  • Simulated Annealing: Given a chance to jump out the local minimum

人工智能的中的搜索
https://blog.superui.cc/artificial-intelligence/ai-search/
作者
Superui
发布于
2021年9月27日
更新于
2021年9月29日
许可协议