人工智能的中的搜索
本文最后更新于:3 年前
人工智能中关于搜索的一些最基础的知识。
AI 中的搜索
对于一个 goal-based agent,搜索是使其找到一个动作或者一系列动作来达到目标。 有很多例子,比如走迷宫,寻路问题,8-queen 问题等。 一般来说包含树搜索和图搜索等。
对于考虑路径的搜索而言
评估策略需考虑以下四个维度:
- Completeness: Does it always find a solution if it exists?
- Time complexity: # nodes generated/expanded.
- Space complexity: maximum # nodes in memory.
- Optimality: Does it always find the least-cost solution?
存在两类搜索策略:
- Uniformed
- Breadth-first search (BFS): Expand shallowest node
- Depth-first search (DFS): Expand deepest node
- Depth-limited search (DLS): Depth first with depth limit
- Iterative-deepening search (IDS): DLS with increasing limit
- Uniform-cost search (UCS): Expand least cost node (the cost could be the length between nodes)
- Informed
- Greedy best-first search: Expand the node that appears to be closest to goal
- A* search: Minimize the total estimated solution cost (to middle node + node to goal;f=g+h). BFS mode.
- IDA*: IDS + A*. DLS mode. The cost of space is lower than A*.
对于 A* 中启发式策略而言(h):
- A good heuristic must be admissible.
- An admissible heuristic never overestimates the cost to reach the goal, that is it is optimistic
- For admissible and , if (s) ≥ (s) for ∀𝑠 ⇒ dominates and is more efficient for search.
UCS vs Greedy Best First vs A*:
- UCS:f(n) = g(n)
- Greedy Best First: f(n) = h(n)
- A*: f(n)=g(n)+h(n)
对于不考虑路径的搜索
Local search: the path doesn’t matter
- Hill climbing
- Genetic algorithms
- Simulated Annealing: Given a chance to jump out the local minimum
人工智能的中的搜索
https://blog.superui.cc/artificial-intelligence/ai-search/